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REGIOSELECTIVITY OF THE REACTIONS OF TRIALKYLALUMINUM
REAGENTS WITH 2,3-EPOXYALCOHOLS: APPLICATION TO THE SYNTHESIS OF o-CHIRAL ALDEHYDES
William R. Roush,*] Michael A. Adam, and Steven M. Peseckis
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Cambridge, MA 02139

Summary: Treatment of optically active 2,3-epoxyalcohols with trialkylaluminum reagents
followed by periodate cleavage constitutes a convenient synthesis of a-chiral aldehyde

derivatives, especially when the branching alkyl group is methyl.

We recently required a convenient source of either 1,2-diol 2 or 1,3-diol 3 for use in
a natural product synthesis. Indeed, treatment of (R,R)-epoxide 12 ([u]%1 + 21.4°, c¢=1.40,
CHCl3, >95% ee) with MepCuli (1.2 equiv.) in Etp0 at -20°C3 for 1 h afforded a mixture of 2
and 3 (ca. 1:6 by NMR analysis), whereas complimentary regioselectivity was realized when 1
was treated with Me3Al (3 equiv.) in CHpCl2 (0° to 23°C over 10 h; ca. 5:1 mixture of g:g).4
These mixtures were inseparable by conventional chromatographic techniques. Purification of
1,3-diol 3, however, was accomplished after treating these mixtures with NalO4 in aqueous THF,
which transformed 1,2-diol 2 to aldehyde 4. In this manner diol §§a,b ([a]go + 16.5°, ¢=1.18,
CHC]3) v.as obtained in 74-79% yield via the cuprate sequence.

Me,Culi, Et,0, -20°C HO CH,
L]

2
OH
> Bno/\(\/OH sno’\,/'\/
H, HO

0.
Bno/\:/\/OH

-or-

Me3A1, CH2C12, 0° » 23°C

1=
i~
(L]

Na104, THF-H,0 (r:1 CH,
—S CHO /\)\/OH
Bro Y B0
1
CH, OH
4 3
MeZCuLi experiment: 10-12% 74-79%
He3A1 experiment: 69-73% 13-14%

We recognized, however, that the sequence involving the Me3A1 reaction could also prove use

ful in synthesis.

Aldehyde 4 and its enantiomer are well-known intermediates usually prepared

from (S)- g-hydroxyisobutyric ac1'd,6 and have been used in a number of recent natural product

syntheses.7 Indeed, aldehyde 4 ([a]s] +28.4°, c=1.56, CHC13) prepared as outlined above was
shown to be at least 95% ee by conversion to alcohol §§ ([a]g] + 16.5°, ¢=1.05, CHC]3; 1it.
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i °
LiAlH,, Et20 » 0°C

CHO BnO OH
BnO/\g 94% /\r\
H, CH,

4 (+)-5

[a]D +17.2°, c=3.24, CHC13); [“]S] + 5.2°, c=1.46, EtOH; 1it.8 [a]D + 5.3°, ¢=2.2, EtOH).

These results encouraged us to study the reactions of trialkylaluminum reagents with
a number of 2,3-epoxyalcohols (Table I).9 Each of the substrates examined underwent substitu-
tion preferentially at the position furthest removed from the hydroxyl substituent. No
product of attack at the o position (C.2) was realized with substrates 11, 13, and 15.‘0
With 1 and 6, however, a lesser degree of regioselectivity was realized owing to the benzyl-
oxy substituent at C.4 which inductively deactivates C.3 towards nucleophilic attack.

One can imagine a number of uses for the 1,2-diols produced in these reactions. We
concentrate here, however, on the application of these compounds as intermediates in the
synthesis of o-chiral a]dehydes.]] Chiral epoxides 1 (>95% ee), g? ([a],]J9 + 22.2°,c=3.86,

CHCY 53 82%]Se), and 11}2([u]59 +23.1°, ¢=0.48, CHCl3; 92% ee) were transformed to 4 (>95% ee),
(-)-§_([a]D - 14.2°, ¢=3.12, CHC13; 82% ee) and 12_([a]%5+ 15.4°, c=1.77, CH2C12; 92% ee
(determined after L1’A1H4 reduction to the corresponding alcoholsa’b)), respectively, with no
detectable racemization. Thus, at least in these examples, the optical purity of the a-chiral
aldehydes produced is determined by the optical purity of the starting epoxya]coho]s.]3

This two step sequence coupled to the Sharpless asymmetric epoxidation lr‘eaction]4
constitutes a convenient synthesis of g-chiral aldehyde derivatives, especially when the
branching alkyl group is methyl. One problem which remains to be solved, however, is the
proclivity of alkylaluminum reagents such as Et3A] to serve as hydride donors (see the

second and seventh entries of Table I}. Possible solutions to this problem are under current
1‘nvest1‘gat1’on.]5

Representative Experimental Procedure: Synthesis of Aldehyde 4: To a 0°C solution of 2.63 g
(13.6 mmo1) of epoxide l_([a]g1 +21.4°, c=1.40, CHC13; >95% ee) in 20 mL of CH,Cl, under argon
was added dropwise 17.2 mL (40.6 mmol, 3 equiv.) of 2.36 M Me3A1 in hexane. The reaction
mixture was stirred at room temperature for 10 h and then cooled to 0°C and quenched with 40 mL
of 3N HCI1. After extractive workup the crude mixture of 2 and 3 (83:17 ratio by 270 MHz ]H NMR)
was treated with 4.35 g (20.3 mmol) of NalO4 in 70 mL of 1:1 aqueous THF. This mixture was
stirred for 2 h at room temperature and then was worked up by extraction. The crude product
was purified by flash chromatography (silica gel, 19:1 hexane-ether) to give 408 mg (14%) of
3 and 1.76 g (73%) of 4: [a]s] + 28.4° (c=1.56, CHC13); NMR (270 MHz, CDC13) § 9.74 (d, J=1.6 Hz,
1 H), 7.34 (m, 5H), 4.54 (s, 2 H), 3.67 (m, 2 H), 2.69 (m, 1 H), 1.15 (d, J=6.9 Hz, 3 H); IR
(neat) 3090, 3070, 3040, 2980, 2940, 2870, 2720, 1725 cm']. The optical purity of 4 was de-
termined to be at least 95% ee by reduction to (+)-5 (see text).
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Scheme 198

CHO
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CH, OH
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OH
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—> TBDPSO CHO
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OH

18% (22%)

17 (43%)

(a) This compound was separated by chromatography before the periodate cleavage step.
(b) Racemic epoxide was used.
(c) An unidentified mixture of by-products (12-13%) was isolated from this sequence.
(d) An unidentified mixture of by-products (ca. 25%) was also obtained.
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